

Advances in China's Basic Research

Exploration, Identification and Utilization of **Barley Germplasm**

Guoping Zhang, Chengdao Li Editors

In the face of the challenges to barley production caused by climate change, intensive agriculture, narrowing biodiversity and the use of marginal soils, Exploration, Identification and Utilization of Barley Germplasm, presents recent advances in the exploitation and utilization of barley germplasm, for food and malt barley productivity and sustainability. The book's topics include: the identification and creation of elite genotypes and the utilization of novel germplasm to enhance crop breeding, genetics and evolution studies; the latest research on the mechanisms of barley abiotic stress tolerance, including responses to drought, salinity, and acid soil caused by aluminium toxicity, waterlogging and frost; and current advances in sequencing technologies and their potential applications, including improvement of yield and adaptation by the manipulation of phenology genes.

Key Features

• Describes special genotypes from wild barley, including Tibetan wild barley, which show wider genetic diversity and higher tolerance to abiotic stresses than cultivated barley;

• Focuses on the techniques for improvement of yield and adaptation by the manipulation of phenology genes.

About the Editors

Guoping Zhang is a Professor at the Agronomy Department of Zhejiang University, Hangzhou, China. He has been engaged in barley genetics and breeding for more than twenty years. In April 2012, Professor Zhang organized the 11th International Barley Genetics Symposium (IBGS) in Hangzhou, and was selected as the chairman of the IBGS (2012 - 2016).

Chengdao Li is a Professor at Murdoch University, Australia, and a guest professor at Zhejiang University, China. He has extensive international experience in barley breeding and molecular genetics. His research on barley germplasm development and breeding has resulted in the development and release of the new barley varieties "Baudin", and "Hamelin", as well as the identification and characterization of more than ten elite barley genotypes with high tolerance to abiotic stresses and high malt qualities.

Exploration, Identification and Utilization of Barley Germplasm

¥

浙江大学出版社

Guoping Zhang, Chengdao Li Eds.

Exploration, Identification and Utilization of Barley Germplasm

Guoping Zhang, Chengdao Li Editors

Supported by the National Natural Science Foundation of China (Nos.31330055 and 3161001022)

Exploration, Identification and Utilization of Barley Germplasm

Guoping Zhang, Chengdao Li *Editors*

ZHEJIANG UNIVERSITY PRESS 浙江大学出版社

图书在版编目(CIP)数据

大麦种质资源创新与利用=Exploration, Identification and Utilization of Barley Germplasm: 英文/张国平,李承道编著.— 杭州:浙江大学出版社, 2018.3

ISBN 978-7-308-16576-1

I.①大… Ⅱ.①张…②李… Ⅲ.①大麦-种质资 源-研究-英文 Ⅳ.①S512.302.4

中国版本图书馆CIP数据核字(2017)第003324号

大麦种质资源创新与利用

张国平 李承道 编著

丛书统	筹	国家自然科学基金委员会科学传播中心
策划编	辑	徐有智 许佳颖
责任编	辑	潘晶晶(panjingjing@zju. edu.cn)
责任校	对	张凌静
封面设	计	程晨
出版发	行	浙江大学出版社
		(杭州市天目山路148号 邮政编码310007)
		(网址: http://www.zjupress.com)
排	版	杭州兴邦电子印务有限公司
印	刷	浙江海虹彩色印务有限公司
开	本	710mm×1000mm 1/16
印	张	22.5
字	数	600千
版 印	次	2018年3月第1版 2018年3月第1次印刷
书	号	ISBN 978-7-308-16576-1
定	价	168.00元

版权所有 翻印必究 印装差错 负责调换

浙江大学出版社发行中心电话(0571) 88925591; http://zjdxcbs.tmall.com

Advances in China's Basic Research Editorial Board

Editor-in-Chief YANG Wei

Deputy Editors GAO Wen GAO Ruiping

Members

HAN Yu	WANG Changrui	ZHENG Yonghe
ZHENG Zhongwen	FENG Feng	ZHOU Yanze
GAO Tiyu	ZHU Weitong	MENG Qingguo
CHEN Yongjun	DU Shengming	WANG Qidong
LI Ming	QIN Yuwen	GAO Ziyou
DONG Erdan	HAN Zhiyong	YANG Xinquan
REN Shengli		

Preface to the Series

As Lao Tzu said, "A huge tree grows from a tiny seedling; a nine-storey tower rises up from a mound of earth." Basic research is the fundamental approach to foster innovation-driven development, and its level becomes an important vardstick for measuring the overall scientific and national strength of a country. Since the beginning of the 21st century, China's overall strength in basic research has been increasing consistently. With respect to input and output, China's input in basic research has increased by 14.8 times from 5.22 billion yuan in 2001 to 82.29 billion yuan in 2016, with an average annual increase of 20.2%. In the same period, the number of China's scientific papers included in Science Citation Index (SCI) increased from less than 40,000 to 324,000; China rose from the 6th place to the 2nd place in global ranking in terms of the number of published papers. In regard to the quality of output, in 2016, China ranked No.2 in the world in terms of citation in 9 disciplines, among which Materials Science ranked No.1; in the past two years, China ranked No.3 in the world both in the number of top 1% most-cited international papers and the number of top 1‰ international hot papers with global share of 25.1%. In talent cultivation, in 2016, 175 scientists from China were included in the Thomson Reuters Highly-Cited Researchers List (136 of which from the Chinese Mainland), which ranked the fourth in the world and the first in Asia.

Meanwhile, we should also be keenly aware that China's basic research is still subject to great challenges. First, funding for basic research in China is still far less than that in developed countries — only about 5% of the R&D funds in China are used for basic research, a much lower percentage than the 15%–20% in developed countries. Second, competence for original innovation in China is insufficient. The major original science achievements that have global impact are still rare. Most of the scientific research projects are just a follow-up and imitation of the existing researches, rather than brand new novel or pioneering work. Third, the development of disciplines is not balanced, and China's research level in

some disciplines is noticeably lower than the international level — China's Field-Weighted Citation Impact (FWCI) in disciplines just reached 0.94 in 2016, lower than the world average of 1.0.

The Chinese government attaches great importance to basic research. In the "13th Five-Year Plan", China has confirmed scientific and technological innovation as a priority in all-round innovation, and has made strategic arrangements to strengthen basic research. General Secretary Xi Jinping put forward a grand blueprint of making China into a strong power in science and technology in his speech delivered at the National Conference on Scientific and Technological Innovation, and placed emphases on "targeting the world's advanced scientific and technological frontier, consolidating basic research to achieve major breakthroughs in forward-looking basic research and steering original achievements" at the 19th CPC National Congress on Oct.18, 2017. With more than 30 years of unremitting exploration, the National Natural Science Foundation of China (NSFC), one of the main channels for supporting basic research in China, has gradually shaped a funding pattern covering research, talents, tools and convergence, and has taken actions to vigorously promote basic frontier research and the growth of scientific research talents, reinforce the building of innovative research teams, deepen regional cooperation and exchanges, and push forward multidisciplinary convergence. As of 2016, nearly 70% of China's published scientific papers were funded by NSFC — accounted for 1/9 of the total number of published papers all over the world. Facing the new strategic target of building China into a strong country in science and technology, NSFC will conscientiously reinforce forward-looking planning, and enhance the efficiency of evaluation, so as to achieve the strategic goal of making China progressively share the same level with major innovative countries in research output, impact and original contribution by 2050.

The series of *Advances in China's Basic Research* and the series of *Reports of China's Basic Research* proposed and planned by NSFC emerge under such a background. Featuring of science, basics and advances, the two series are aimed to share innovative achievements, diffuse performances of basic research, and lead breakthroughs in key fields. They will closely follow the frontiers of basic research developments in China, and publish excellent innovation achievements funded by NSFC. The series of *Advances in China's Basic Research* will mainly present the important original achievements of the programs funded by NSFC

and display the breakthroughs and forward guidance of the key research fields, while the series of *Reports of China's Basic Research* will show the core contents of the final reports of the Major Programs and the Major Research Plans funded by NSFC to make a systematical summarization and strategic outlook of the achievements in the fields preferred to be funded by NSFC. We not only hope to comprehensively and systematically display the backgrounds, scientific significances, discipline layouts, frontier breakthroughs of the programs, as well as strategic outlooks of the subsequent research, but also expect to summarize the innovative ideas, enhance multidisciplinary convergence and promote the continuity of research in the fields concerned as well as original discoveries.

As an old saying in *Hsun Tzu* goes, "Where accumulated earth becomes a mountain, there prevails wind and rain. Where running waters gather widely and deeply, there gives birth to dragons." The series of *Advances in China's Basic Research* and the series of *Reports of China's Basic Research* are hoped to become the "historical records" of China's basic research, which will provide researchers with abundant scientific research materials and sources for innovation. It's believed that the series will certainly play an active role in making China's basic research prosper and in building China into a powerful nation of science and technology.

President of NSFC Academician of Chinese Academy of Sciences Dec. 2017, Beijing

Preface

Exploration and utilization of new germplasm has played a pivotal role in the increase of barley yield and improvement of malting quality in the 20th century. The *denso* gene from Triumph, *ari*-GP gene from Golden Promise, and *uze* gene from the Southeast Asian barley have become the cornerstones for modern barley breeding success in the world. Recently, success for deployment of the acid soil and boron toxicity tolerance genes in the Australian barley varieties have further demonstrated the high value of new germplasm in enhancing barley productivity and sustainability.

The consumption of barley keeps increasing with the growing population and the improvements in standards of living around the world. Barley is mainly used as raw material for feed and beer production. In recent years, use of barley as a functional food has been intensified due to its special chemical components, which are beneficial to human health. In this book, we present the advances in exploitation and utilization of barley germplasm for food and malt barley improvement. As a cereal crop, barley is often grown in the marginal soils. Climate irregularity has added new challenges to barley production. Understanding the mechanisms for barley's environmental stress tolerance is essential for future barley production. This book focuses on recent advances in barley abiotic stress tolerance, including drought, salinity, acidic soil (aluminum toxicity), waterlogging, and frost, with an emphasis on novel germplasm and technologies for germplasm exploration. The international community is still in the early stages of completing the barley genome sequence. However, recent advances in sequencing technology will have a dramatic impact on barley germplasm exploration and utilization. Thus, this book also includes one chapter on sequencing technologies and their potential applications.

The authors of each chapter in this book are researchers who are on the frontier in their specific research areas. We aim to cover the most recent

advances for barley quality and abiotic stress tolerance, with an emphasis on practical implementation. The book will provide a good reference both for barley genetics and breeding research.

This book can be read as a companion to *Genetic Improvement of Barley Malt Quality*. The malting quality chapter in this book is a supplementary of the previous book with an emphasis on the Canadian barley germplasm for malting quality improvement, as Canadian barley has been the international benchmark for malting quality.

Australia is the world's largest malting barley exporter and China is the largest malting barley importer. This interrelationship has fostered the two nations' long-term collaboration on barley abiotic stress tolerance. Many of the authors of this book have worked on these collaborative projects. Thus, this book can be seen as a summary of the collaborative research projects of Australia and China. In this regard, we would like to acknowledge the support from the National Natural Science Foundation of China (Nos. 31330055 and 3161001022) and the Australian Grain Research and Development Corporation.

Guoping Zhang and Chengdao Li

Contributors

Imrul Mosaddek Ahmed

Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China

Tefera Tolera Angessa

Western Barley Genetics Alliance, Murdoch University, Murdoch, Australia

Shengguan Cai

Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China

Stewart Coventry University of Adelaide, Waite Campus, PMB, SA, Australia

Alfonso Cuesta-Marcos

Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA

Fei Dai

Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China

Jason Eglinton

University of Adelaide, Waite Campus, PMB, SA, Australia

Neil Fettell

Central West Farming Systems & University of New England, Condobolin, NSW, Australia

Scott Fisk

Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA

Patrick Hayes

Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA

Patricia Juskiw

Field Crop Development Centre, Alberta Agriculture and Forestry, Lacombe, Alberta, Canada

ii Exploration, Identification and Utilization of Barley Germplasm

Chengdao Li

Western Barley Genetics Alliance, Murdoch University, Murdoch, Australia; Department of Agriculture and Food, Western Australia, South Perth, Australia

Yanling Ma

Tasmanian Institute for Agriculture and School of Land and Food, University of Tasmania, Australia

Brigid Meints

Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA

Umme Aktari Nadira

Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China

Kenton Porker

University of Adelaide, Waite Campus, PMB, SA, Australia

Andrew Ross

Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA

Sergey Shabala

Tasmanian Institute for Agriculture and School of Land and Food, University of Tasmania, Australia

Feibo Wu

Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China

Dezhi Wu

Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China

Jennifer Zantinge

Field Crop Development Centre, Alberta Agriculture and Forestry, Lacombe, Alberta, Canada

Guoping Zhang

Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China

Gaofeng Zhou

Western Barley Genetics Alliance, Murdoch University, Murdoch, Australia; Department of Agriculture and Food, Western Australia, South Perth, Australia

Meixue Zhou

Tasmanian Institute for Agriculture and School of Land and Food, University of Tasmania, Australia

Contents

1	Domestication and Improvement of Cultivated Barley	1
	Fei Dai, Guoping Zhang	
	1.1 Origin and Domestication of Barley	1
	1.2 Distribution and Growth Habitats of Wild Barley	4
	1.3 Environmental Adaptation of Wild Barley	11
	1.4 Utilization of Wild Barley in Breeding	24
	References	26
2	Malting Barley Quality Improvement and	
	Germplasm Utilization	35
	Jennifer Zantinge, Patricia Juskiw	
	2.1 Introduction	35
	2.2 Germplasm Foundation for Two-Row Malting	36
	2.3 Screening for Malting Quality	41
	2.4 Integration of Markers into Screening for Malting Quality	42
	2.5 Scald Resistance Marker Development and Utilization	44
	2.6 Utilization of Some Barley Germplasm	45
	2.7 Germplasm and the Future	48
	References	48
3	Food Barley Quality Improvement and	
	Germplasm Utilization	51
	Brigid Meints, Alfonso Cuesta-Marcos, Scott Fisk,	
	Andrew Ross, Patrick Hayes	
	3.1 A Brief History of Barley Foods	51
	3.2 The Renaissance of Barley Foods in Western Culture	53

	3.3 The Oregon State University Case Study	55
	3.4 Products: a Decision to Embrace a Whole-Grain Rather than	
	an "Extractive" Model	62
	3.5 Product Development	64
	3.6 Quality Evaluations	69
	3.7 Beyond Streaker	73
	3.8 Conclusions	81
	Acknowledgments	81
	References	82
4	Exploration and Utilization of Salt-Tolerant Barley	
	Germplasm	91
	Dezhi Wu, Guoping Zhang	
	4.1 Introduction	91
	4.2 Physiologic Responses of Barley to Salt Stress	92
	4.3 Methodologies for Studying Mechanisms of	
	Salt Tolerance in Barley	102
	4.4 Exploration and Utilization of Salt-Tolerant Barley Germplasm	117
	References	128
5	Exploration and Utilization of Drought-Tolerant	
	Barley Germplasm	137
	Imrul Mosaddek Ahmed, Umme Aktari Nadira,	
	Guoping Zhang, Feibo Wu	
	5.1 Introduction	137
	5.2 Drought Tolerance Assessment	138
	5.3 Physiological Bases for Drought Tolerance in Barley	143
	5.4 Genetics and Mechanisms of Drought Stress	
	Tolerance in Barley	150
	5.5 Exploration and Utilization of Drought-Tolerant Barley	
	Germplasm	159
	References	170

6	Exploration and Utilization of Waterlogging-Tolerant	
	Barley Germplasm	185
	Yanling Ma, Meixue Zhou, Sergey Shabala, Chengdao Li	
	6.1 Introduction	185
	6.2 Adverse Effects of Waterlogging or Submergence Stress	186
	6.3 Morphological Strategies for Low-Oxygen Environment	189
	6.4 Molecular Mechanisms	194
	6.5 Metabolism and Signalling Network in Response to	
	Waterlogging and Submergence	199
	6.6 Exploration and Utilization of Barley Genetic Germplasm	
	with High Waterlogging Tolerance	200
	References	207
7	Exploration and Utilization of Aluminum-Tolerant	
	Barley Germplasm	219
	Shengguan Cai, Guoping Zhang	
	7.1 Introduction	220
	7.2 Physiological Responses of Barley to Aluminum Stress	220
	7.3 Mechanisms and Genetics of Al Toxicity Tolerance in Barley	224
	7.4 Exploration and Utilization of Aluminum-Tolerant Barley	
	Germplasm	237
	References	242
8	Frost Tolerance and Genetic Improvement in Barley	253
	Tefera Tolera Angessa, Chengdao Li	
	8.1 Introduction	253
	8.2 Environments	255
	8.3 Frost Management	256
	8.4 Methods of Screening	258
	8.5 Genotypic Variation for Frost Tolerance in Barley	260
	8.6 Genetic Factors Associated with Frost Tolerance in Barley	263
	8.7 Summary	266
	References	266

iv Exploration, Identification and Utilization of Barley Germplasm

9 Exploration and Utilization of Genetic Diversity	
Exotic Germplasm for Barley Improvement	269
Tefera Tolera Angessa, Chengdao Li	
9.1 Overview of Barley Origin	269
9.2 Genetic Diversity in Barley	270
9.3 Barley Uses	271
9.4 Yield-Limiting Factors in Barley	274
9.5 Exotic Barley Germplasm for Improvement	276
9.6 Exploring Barley Genetic Resources	282
9.7 What Limits Use of Exotic Barley Germplasm	
in Breeding Programs?	286
9.8 Summary	287
References	288
10 Improvement of Yield and Adaptation by	• • • •
Manipulating Phenology Genes	291
Kenton Porker, Jason Eglinton, Stewart Coventry, Neil Fettell	
10.1 Introduction	291
10.2 Barley Development and Physiological Determinants	
of Yield	292
10.3 Control of Barley Development	295
10.4 Phenology and Adaptation: Matching Crop Phenology	
to Growing Conditions in Australia	301
10.5 Manipulating Developmental Phases for Further	
Yield Improvement	306
10.6 Conclusions	311
References	312
11 Next-Generation Sequencing Technology:	
Implications for Barley Genetics and Breeding	319
Gaofeng Zhou, Meixue Zhou, Chengdao Li	
11.1 Introduction	319

11.2 Barley Genome Sequencing Projects320

11.3 Next-Generation Sequencing Technology	324
11.4 Next-Generation Sequencing Applications	325
11.5 Conclusions	333
References	334

Index

339